enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    An IEEE 754 format is a "set of representations of numerical values and symbols". A format may also include how the set is encoded. [9] A floating-point format is specified by a base (also called radix) b, which is either 2 (binary) or 10 (decimal) in IEEE 754; a precision p;

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    All integers with seven or fewer decimal digits, and any 2 n for a whole number −149 ≤ n ≤ 127, can be converted exactly into an IEEE 754 single-precision floating-point value. In the IEEE 754 standard, the 32-bit base-2 format is officially referred to as binary32; it was called single in IEEE 754-1985.

  4. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2] During its 23 years, it was the most widely used format for floating-point computation.

  5. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    The half-precision binary floating-point exponent is encoded using an offset-binary representation, with the zero offset being 15; also known as exponent bias in the IEEE 754 standard. [9] E min = 00001 2 − 01111 2 = −14; E max = 11110 2 − 01111 2 = 15; Exponent bias = 01111 2 = 15

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The Bfloat16 format requires the same amount of memory (16 bits) as the IEEE 754 half-precision format, but allocates 8 bits to the exponent instead of 5, thus providing the same range as a IEEE 754 single-precision number. The tradeoff is a reduced precision, as the trailing significand field is reduced from 10 to 7 bits.

  7. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    The quadruple-precision binary floating-point exponent is encoded using an offset binary representation, with the zero offset being 16383; this is also known as exponent bias in the IEEE 754 standard. E min = 0001 16 − 3FFF 16 = −16382; E max = 7FFE 16 − 3FFF 16 = 16383; Exponent bias = 3FFF 16 = 16383

  8. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    The new IEEE 754 (formally IEEE Std 754-2008, the IEEE Standard for Floating-Point Arithmetic) was published by the IEEE Computer Society on 29 August 2008, and is available from the IEEE Xplore website [4] This standard replaces IEEE 754-1985. IEEE 854, the Radix-Independent floating-point standard was withdrawn in December 2008.

  9. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    The IEEE 754-2008 standard includes decimal floating-point number formats in which the significand and the exponent (and the payloads of NaNs) can be encoded in two ways, referred to as binary encoding and decimal encoding.