Search results
Results from the WOW.Com Content Network
In the SI system of units, the preferred unit for volumetric flow rate is cubic meter per second, equivalent to 60,000 liters per minute. If the gas is to be considered as an ideal gas, then SLPM can be expressed as mole per second using the molar gas constant = 8.314510 J⋅K −1 ⋅mol −1: = = mol/s.
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., Z n = 1 {\\displaystyle Z_{n}=1} ).
Technical literature can be confusing because many authors fail to explain whether they are using the ideal gas constant R, or the specific gas constant R s. The relationship between the two constants is R s = R / m, where m is the molecular mass of the gas. The US Standard Atmosphere (USSA) uses 8.31432 m 3 ·Pa/(mol·K) as the value of R.
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
A normal cubic meter (Nm 3) is the metric expression of gas volume at standard conditions and it is usually (but not always) defined as being measured at 0 °C and 1 atmosphere of pressure. A standard cubic foot (scf) is the USA expression of gas volume at standard conditions and it is often ( but not always ) defined as being measured at 60 ...
Gas meter. A gas meter is a specialized flow meter, used to measure the volume of fuel gases such as natural gas and liquefied petroleum gas. Gas meters are used at residential, commercial, and industrial buildings that consume fuel gas supplied by a gas utility. Gases are more difficult to measure than liquids, because measured volumes are ...
Actual cubic foot per minute (ACFM) is the volume of gas flowing anywhere in a system, taking into account its temperature and pressure. If the system were moving a gas at exactly the "standard" condition, then ACFM would equal SCFM. This usually is not the case as the most important change between these two definitions is the pressure.
Consider a graph of pressure versus temperature made around standard conditions (well above absolute zero) for three different samples of any ideal gas (a, b, c). To the extent that the gas is ideal, the pressure depends linearly on temperature, and the extrapolation to zero pressure occurs at absolute zero. [3]