enow.com Web Search

  1. Ad

    related to: one way anova in statistics

Search results

  1. Results from the WOW.Com Content Network
  2. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1]

  3. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    To check for statistical significance of a one-way ANOVA, we consult the F-probability table using degrees of freedom at the 0.05 alpha level. After computing the F-statistic, we compare the value at the intersection of each degrees of freedom, also known as the critical value.

  4. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    Difference between ANOVA and Kruskal–Wallis test with ranks. The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution.

  5. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    Common examples of the use of F-tests include the study of the following cases . One-way ANOVA table with 3 random groups that each has 30 observations. F value is being calculated in the second to last column The hypothesis that the means of a given set of normally distributed populations, all having the same standard deviation, are equal.

  6. Brown–Forsythe test - Wikipedia

    en.wikipedia.org/wiki/Brown–Forsythe_test

    The Brown–Forsythe test is a statistical test for the equality of group variances based on performing an Analysis of Variance (ANOVA) on a transformation of the response variable. When a one-way ANOVA is performed, samples are assumed to have been drawn from distributions with equal variance .

  7. Friedman test - Wikipedia

    en.wikipedia.org/wiki/Friedman_test

    The Friedman test is used for one-way repeated measures analysis of variance by ranks. In its use of ranks it is similar to the Kruskal–Wallis one-way analysis of variance by ranks. The Friedman test is widely supported by many statistical software packages .

  8. Contrast (statistics) - Wikipedia

    en.wikipedia.org/wiki/Contrast_(statistics)

    In a balanced one-way analysis of variance, using orthogonal contrasts has the advantage of completely partitioning the treatment sum of squares into non-overlapping additive components that represent the variation due to each contrast. [6] Consider the numbers above: each of the rows sums up to zero (hence they are contrasts).

  9. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    Another omnibus test we can find in ANOVA is the F test for testing one of the ANOVA assumptions: the equality of variance between groups. In One-Way ANOVA, for example, the hypotheses tested by omnibus F test are: H0: μ 1 =μ 2 =....= μ k. H1: at least one pair μ j ≠μ j'

  1. Ad

    related to: one way anova in statistics