enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: = where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K, [1] [2] or b ...

  3. Thermal remote sensing - Wikipedia

    en.wikipedia.org/wiki/Thermal_Remote_sensing

    Stefan–Boltzmann law: Surface temperature of any objects radiate energy and shows specific properties. These properties are calculated by Boltzmann law. 2. Wien's displacement law: Wien's displacement law explains the relation between temperature and the wavelength of radiation. It states that the wavelength of radiation emitted from a ...

  4. Wien approximation - Wikipedia

    en.wikipedia.org/wiki/Wien_approximation

    Comparison of Wien’s curve and the Planck curve. Wien's approximation (also sometimes called Wien's law or the Wien distribution law) is a law of physics used to describe the spectrum of thermal radiation (frequently called the blackbody function). This law was first derived by Wilhelm Wien in 1896.

  5. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    A consequence of Wien's displacement law is that the wavelength at which the intensity per unit wavelength of the radiation produced by a black body has a local maximum or peak, , is a function only of the temperature: =, where the constant b, known as Wien's displacement constant, is equal to + 2.897 771 955 × 10 −3 m K. [31]

  6. File:Wien's Displacement Law Variations Chart.svg - Wikipedia

    en.wikipedia.org/wiki/File:Wien's_Displacement...

    Formulas for the various peak wavelengths and mean photon energy were taken from the Wikipedia Wien's displacement law page. The median and quartiles were computed by numerically integrating Planck's law ; however, for any who wish to avoid this, information on percentiles is given in the Planck's law article.

  7. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    Wien's displacement law, and the fact that the frequency is inversely proportional to the wavelength, indicates that the peak frequency f max is proportional to the absolute temperature T of the black body. The photosphere of the sun, at a temperature of approximately 6000 K, emits radiation principally in the (human-)visible portion of the ...

  8. Astronomical spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Astronomical_spectroscopy

    b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K. [24] This equation is called Wien's Law. By measuring the peak wavelength of a star, the surface temperature can be determined. [17] For example, if the peak wavelength of a star is 502 nm the corresponding temperature will be ...

  9. Thermophotovoltaic energy conversion - Wikipedia

    en.wikipedia.org/wiki/Thermophotovoltaic_energy...

    Thus, the light flux with wavelengths in a specific range can be found by integrating over the range. The peak wavelength is determined by the temperature, T emit based on Wien's displacement law: =, where b is Wien's displacement constant. For most materials, the maximum temperature an emitter can stably operate at is about 1800 °C.