Search results
Results from the WOW.Com Content Network
The canal of the nutrient foramen is directed away from more active end of bone when one end grows more than the other. When bone grows at same rate at both ends, the nutrient artery is perpendicular to the bone. Most other bones (e.g. vertebrae) also have primary ossification centers, and bone is laid down in a similar manner. Secondary centers
In bone, mineralization starts from a heterogeneous solution having calcium and phosphate ions. The mineral nucleates, inside the hole area of the collagen fibrils, as thin layers of calcium phosphate, which then grow to occupy the maximum space available there. The mechanisms of mineral deposition within the organic portion of the bone are ...
One of the principal causes of arterial stiffening with age is vascular calcification. Vascular calcification is the deposition of mineral in the form of calcium phosphate salts in the smooth muscle-rich medial layer of large arteries including the aorta. DNA damage, especially oxidative DNA damage, causes accelerated vascular calcification. [11]
The osteoclast releases hydrogen ions through the action of carbonic anhydrase (H 2 O + CO 2 → HCO 3 − + H +) through the ruffled border into the resorptive cavity, acidifying and aiding dissolution of the mineralized bone matrix into Ca 2+, H 3 PO 4, H 2 CO 3, water and other substances. Dysfunction of the carbonic anhydrase has been ...
Mineralization may refer to: Biomineralization (mineralization in biology), when an inorganic substance precipitates in an organic matrix Mineralized tissues are tissues that have undergone mineralization, including bones, teeth, antlers, and marine shells Bone remodeling, involving demineralization and remineralization in bones
Bone tissue is a dynamic system with active metabolism. [24] Bone tissue remodelling or bone remodeling is a successive chain of old bone matrix removal and its replacement with a new one. [25] These processes make a child’s skeleton grow and extend, while childhood is characterized by bone tissue growth rather than its resorption.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
During bone formation, an osteoblast is left behind and buried in the bone matrix as an "osteoid osteocyte", which maintains contact with other osteoblasts through extended cellular processes. [9] Although recently it was shown that vascular smooth muscle cells drive osteocyte differentiation [ 10 ] , most aspects of osteocytogenesis remain ...