Search results
Results from the WOW.Com Content Network
An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B occurring in the presence of A, and the odds of B in the absence of A.
In epidemiology and biostatistics, the experimental event rate (EER) is a measure of how often a particular statistical event (such as response to a drug, adverse event or death) occurs within the experimental group (non-control group) of an experiment.
Diagnostic odds ratios less than one indicate that the test can be improved by simply inverting the outcome of the test – the test is in the wrong direction, while a diagnostic odds ratio of exactly one means that the test is equally likely to predict a positive outcome whatever the true condition – the test gives no information.
For a continuous independent variable the odds ratio can be defined as: The image represents an outline of what an odds ratio looks like in writing, through a template in addition to the test score example in the "Example" section of the contents. In simple terms, if we hypothetically get an odds ratio of 2 to 1, we can say...
Once again, the answer can be reached without using the formula by applying the conditions to a hypothetical number of cases. For example, if the factory produces 1,000 items, 200 will be produced by A, 300 by B, and 500 by C. Machine A will produce 5% × 200 = 10 defective items, B 3% × 300 = 9, and C 1% × 500 = 5, for a total of 24.
The simplest measure of association for a 2 × 2 contingency table is the odds ratio. Given two events, A and B, the odds ratio is defined as the ratio of the odds of A in the presence of B and the odds of A in the absence of B, or equivalently (due to symmetry), the ratio of the odds of B in the presence of A and the odds of B in the absence of A.
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...
Formula Value Absolute risk reduction : ARR CER − EER: 0.3, or 30% Number needed to treat: NNT 1 / (CER − EER) 3.33 Relative risk (risk ratio) RR EER / CER: 0.25 Relative risk reduction: RRR (CER − EER) / CER, or 1 − RR: 0.75, or 75% Preventable fraction among the unexposed: PFu (CER − EER) / CER: 0.75 Odds ratio: OR (EE / EN) / (CE ...