Search results
Results from the WOW.Com Content Network
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
For example, when =, the binomial coefficient () is equal to 6, and there are six arrangements of two copies of A and two copies of B: AABB, ABAB, ABBA, BAAB, BABA, BBAA. The same central binomial coefficient ( 2 n n ) {\displaystyle {\binom {2n}{n}}} is also the number of words of length 2 n made up of A and B within which, as one reads from ...
This is perhaps the simplest known proof, requiring the least mathematical background. It is an attractive example of a combinatorial proof (a proof that involves counting a collection of objects in two different ways). The proof given here is an adaptation of Golomb's proof. [1] To keep things simple, let us assume that a is a positive integer.
In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).
In mathematics, Wolstenholme's theorem states that for a prime number, the congruence ()holds, where the parentheses denote a binomial coefficient.For example, with p = 7, this says that 1716 is one more than a multiple of 343.