Search results
Results from the WOW.Com Content Network
If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...
where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t , it is sufficient to raise the transition matrix of jump one to the power of t , that is
This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.
A sequence of random variables that are i.i.d, conditional on some underlying distributional form, is exchangeable. This follows directly from the structure of the joint probability distribution generated by the i.i.d. form. Mixtures of exchangeable sequences (in particular, sequences of i.i.d. variables) are exchangeable.
In probability theory and statistics Chow–Liu tree is an efficient method for constructing a second-order product approximation of a joint probability distribution, first described in a paper by Chow & Liu (1968). The goals of such a decomposition, as with such Bayesian networks in general, may be either data compression or inference.
In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional normal distribution to higher dimensions.
For example, it may be used, when joint probability density function between two random variables is known, the copula density function is known, and one of the two marginal functions are known, then, the other marginal function can be calculated, or
Similar to the examples described above, we consider x, y, φ to be independent uniform random variables over the ranges 0 ≤ x ≤ a, 0 ≤ y ≤ b, − π / 2 ≤ φ ≤ π / 2 . To solve such a problem, we first compute the probability that the needle crosses no lines, and then we take its complement.