Search results
Results from the WOW.Com Content Network
However, it is not beyond doubt that the passage describes deliberate quench-hardening, rather than simply cooling. [8] Likewise, there is a prospect that the Mahabharata refers to the oil-quenching of iron arrowheads, but the evidence is problematic. [9] Pliny the Elder addressed the topic of quenchants, distinguishing the water of different ...
Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching.
The term hardened steel is often used for a medium or high carbon steel that has been given heat treatment and then quenching followed by tempering. The quenching results in the formation of metastable martensite, the fraction of which is reduced to the desired amount during tempering. This is the most common state for finished articles such as ...
The quenching is required since the material otherwise would start the precipitation already during the slow cooling. This type of precipitation results in few large particles rather than the, generally desired, profusion of small precipitates. Precipitation hardening is one of the most commonly used techniques for the hardening of metal alloys.
Once removed from the oven, the workpieces are often quickly cooled off in a process known as quench hardening. Typical methods of quench hardening materials involve media such as air, water, oil, or salt. Salt is used as a medium for quenching usually in the form of brine (salt water). Brine provides faster cooling rates than water.
Diagram of a cross section of a katana, showing the typical arrangement of the harder and softer zones. Differential hardening (also called differential quenching, selective quenching, selective hardening, or local hardening) is most commonly used in bladesmithing to increase the toughness of a blade while keeping very high hardness and strength at the edge.
The quenching converts the billet's surface layer to martensite, and causes it to shrink. The shrinkage pressurizes the core, helping to form the correct crystal structures. The core remains hot, and austenitic. A microprocessor controls the water flow to the quench box, to manage the temperature difference through the cross-section of the bars.
The two important aspects of quenching are the cooling rate and the holding time. The most common practice is to quench into a bath of liquid nitrite-nitrate salt and hold in the bath. Because of the restricted temperature range for processing it is not usually possible to quench in water or brine, but high temperature oils are used for a ...