enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    The SI base units of both stress tensor and traction vector are newton per square metre (N/m 2) or pascal (Pa), corresponding to the stress scalar. The unit vector is dimensionless. The Cauchy stress tensor obeys the tensor transformation law under a change in the system of coordinates.

  3. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    The divergence of a tensor field () is defined using the recursive relation = ; = () where c is an arbitrary constant vector and v is a vector field. If T {\displaystyle {\boldsymbol {T}}} is a tensor field of order n > 1 then the divergence of the field is a tensor of order n − 1.

  4. First law of thermodynamics (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/First_law_of...

    i.e. stress times divergence of material flow equals deviatoric stress tensor times divergence of material flow minus pressure times material flow. h = e + p ρ {\displaystyle h=e+{\frac {p}{\rho }}} i.e. enthalpy per unit mass equals proper energy per unit mass plus pressure times volume per unit mass (reciprocal of mass density).

  5. Cauchy momentum equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy_momentum_equation

    By expressing the shear tensor in terms of viscosity and fluid velocity, and assuming constant density and viscosity, the Cauchy momentum equation will lead to the Navier–Stokes equations. By assuming inviscid flow, the Navier–Stokes equations can further simplify to the Euler equations. The divergence of the stress tensor can be written as

  6. Alternative stress measures - Wikipedia

    en.wikipedia.org/wiki/Alternative_stress_measures

    In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined: [1] [2] [3] The Kirchhoff stress (). The nominal stress ().

  7. Contracted Bianchi identities - Wikipedia

    en.wikipedia.org/wiki/Contracted_Bianchi_identities

    In general relativity and tensor calculus, the contracted Bianchi identities are: [1] = where is the Ricci tensor, the scalar curvature, and indicates covariant differentiation.

  8. Maxwell stress tensor - Wikipedia

    en.wikipedia.org/wiki/Maxwell_stress_tensor

    All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...

  9. Stress functions - Wikipedia

    en.wikipedia.org/wiki/Stress_functions

    The Airy stress function is a special case of the Maxwell stress functions, in which it is assumed that A=B=0 and C is a function of x and y only. [2] This stress function can therefore be used only for two-dimensional problems. In the elasticity literature, the stress function is usually represented by and the stresses are expressed as