Search results
Results from the WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
A list comprehension has the same syntactic components to represent generation of a list in order from an input list or iterator: A variable representing members of an input list. An input list (or iterator). An optional predicate expression. And an output expression producing members of the output list from members of the input iterable that ...
A hash variable is marked by a % sigil, to distinguish it from scalar, array, and other data types. A hash literal is a key-value list, with the preferred form using Perl's => token, which is semantically mostly identical to the comma and makes the key-value association clearer:
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
For example, many programming languages provide special syntax for referencing and updating array elements. Abstractly, an array reference is a procedure of two arguments: an array and a subscript vector, which could be expressed as get_array(Array, vector(i,j)). Instead, many languages provide syntax such as Array[i,j].
Thus, each list can be generated in sorted form in time (/). Given the two sorted lists, the algorithm can check if an element of the first array and an element of the second array sum up to T in time (/). To do that, the algorithm passes through the first array in decreasing order (starting at the largest element) and the second array in ...
In computer programming, array slicing is an operation that extracts a subset of elements from an array and packages them as another array, possibly in a different dimension from the original.
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.