Search results
Results from the WOW.Com Content Network
The first Dahlquist barrier states that a zero-stable and linear q-step multistep method cannot attain an order of convergence greater than q + 1 if q is odd and greater than q + 2 if q is even. If the method is also explicit, then it cannot attain an order greater than q ( Hairer, Nørsett & Wanner 1993 , Thm III.3.5).
A linear multistep method is zero-stable if all roots of the characteristic equation that arises on applying the method to ′ = have magnitude less than or equal to unity, and that all roots with unit magnitude are simple. [2]
The relation between local and global truncation errors is slightly different from in the simpler setting of one-step methods. For linear multistep methods, an additional concept called zero-stability is needed to explain the relation between local and global truncation errors. Linear multistep methods that satisfy the condition of zero ...
They include multistage Runge–Kutta methods that use intermediate collocation points, as well as linear multistep methods that save a finite time history of the solution. John C. Butcher originally coined this term for these methods and has written a series of review papers, [1] [2] [3] a book chapter, [4] and a textbook [5] on the topic.
However, linear multistep methods with an order greater than 2 cannot be A-stable. The stability region of the higher-order BDF methods contain a large part of the left half-plane and in particular the whole of the negative real axis. The BDF methods are the most efficient linear multistep methods of this kind. [5]
List of Runge–Kutta methods; Linear multistep method — the other main class of methods for initial-value problems Backward differentiation formula — implicit methods of order 2 to 6; especially suitable for stiff equations; Numerov's method — fourth-order method for equations of the form ″ = (,)
Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...
Matrix Toolkit Java (MTJ) is an open-source Java software library for performing numerical linear algebra. The library contains a full set of standard linear algebra operations for dense matrices based on BLAS and LAPACK code. Partial set of sparse operations is provided through the Templates project.