enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In structural and mechanical engineering, the shear strength of a component is important for designing the dimensions and materials to be used for the manufacture or construction of the component (e.g. beams, plates, or bolts). In a reinforced concrete beam, the main purpose of reinforcing bar (rebar) stirrups is to increase the shear strength.

  3. Reinforced concrete - Wikipedia

    en.wikipedia.org/wiki/Reinforced_concrete

    Tensile strength (σt) Stronger than concrete. Reinforced concrete, also called ferroconcrete, is a composite material in which concrete 's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility.

  4. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  5. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and between 25% and 40 ...

  6. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    The four-point flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test. The major difference being that with the addition of a fourth bearing the portion of the beam ...

  7. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or in notation) [ 1 ] is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate tensile strength is close to the yield point, whereas in ductile materials, the ultimate tensile ...

  8. Flexural strength - Wikipedia

    en.wikipedia.org/wiki/Flexural_strength

    Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1] The transverse bending test is most frequently employed, in which a specimen having either a circular or rectangular cross-section is bent ...

  9. T-beam - Wikipedia

    en.wikipedia.org/wiki/T-beam

    T-beam. A T-beam (or tee beam), used in construction, is a load-bearing structure of reinforced concrete, wood or metal, with a capital 'T'-shaped cross section. The top of the T-shaped cross section serves as a flange or compression member in resisting compressive stresses. The web (vertical section) of the beam below the compression flange ...