enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonometric tables - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_tables

    In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.

  3. Sine bar - Wikipedia

    en.wikipedia.org/wiki/Sine_bar

    10-inch and 100-millimetre sine bars. In the U.S., 5-inch sine bars are the most common size. [1] Angles are measured using a sine bar with the help of gauge blocks and a dial gauge or a spirit level. The aim of a measurement is to measure the surface on which the dial gauge or spirit level is placed horizontally.

  4. Outline of trigonometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_trigonometry

    Trigonometric tables. Generating trigonometric tables; Āryabhaṭa's sine table; Bhaskara I's sine approximation formula; Madhava's sine table; Ptolemy's table of chords, written in the second century A.D. Rule of marteloio; Canon Sinuum, listing sines at increments of two arcseconds, published in the late 1500s

  5. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    In the table below, the label "Undefined" represents a ratio : If the codomain of the trigonometric functions is taken to be the real numbers these entries are undefined , whereas if the codomain is taken to be the projectively extended real numbers , these entries take the value ∞ {\displaystyle \infty } (see division by zero ).

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The half-angle formula for sine can be obtained by replacing with / and taking the square-root of both sides: ⁡ (/) = (⁡) /. Note that this figure also illustrates, in the vertical line segment E B ¯ {\displaystyle {\overline {EB}}} , that sin ⁡ 2 θ = 2 sin ⁡ θ cos ⁡ θ {\displaystyle \sin 2\theta =2\sin \theta \cos \theta } .

  7. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Abu al-Wafa had sine tables in 0.25° increments, to 8 decimal places of accuracy, and accurate tables of tangent values. [16] He also made important innovations in spherical trigonometry [17] [18] [19] The Persian polymath Nasir al-Din al-Tusi has been described as the creator of trigonometry as a mathematical discipline in its own right.

  8. Madhava's sine table - Wikipedia

    en.wikipedia.org/wiki/Madhava's_sine_table

    Madhava's sine table is the table of trigonometric sines constructed by the 14th century Kerala mathematician-astronomer Madhava of Sangamagrama (c. 1340 – c. 1425). The table lists the jya-s or Rsines of the twenty-four angles from 3.75 ° to 90° in steps of 3.75° (1/24 of a right angle , 90°).

  9. Mathematical table - Wikipedia

    en.wikipedia.org/wiki/Mathematical_table

    The first tables of trigonometric functions known to be made were by Hipparchus (c.190 – c.120 BCE) and Menelaus (c.70–140 CE), but both have been lost. Along with the surviving table of Ptolemy (c. 90 – c.168 CE), they were all tables of chords and not of half-chords, that is, the sine function. [1]