Search results
Results from the WOW.Com Content Network
Āryabhaṭa's table was the first sine table ever constructed in the history of mathematics. [8] The now lost tables of Hipparchus (c. 190 BC – c. 120 BC) and Menelaus (c. 70–140 CE) and those of Ptolemy (c. AD 90 – c. 168) were all tables of chords and not of half-chords. [8] Āryabhaṭa's table remained as the standard sine table of ...
10-inch and 100-millimetre sine bars. In the U.S., 5-inch sine bars are the most common size. [1] Angles are measured using a sine bar with the help of gauge blocks and a dial gauge or a spirit level. The aim of a measurement is to measure the surface on which the dial gauge or spirit level is placed horizontally.
In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.
Trigonometric tables. Generating trigonometric tables; Āryabhaṭa's sine table; Bhaskara I's sine approximation formula; Madhava's sine table; Ptolemy's table of chords, written in the second century A.D. Rule of marteloio; Canon Sinuum, listing sines at increments of two arcseconds, published in the late 1500s
In the table below, the label "Undefined" represents a ratio : If the codomain of the trigonometric functions is taken to be the real numbers these entries are undefined , whereas if the codomain is taken to be the projectively extended real numbers , these entries take the value ∞ {\displaystyle \infty } (see division by zero ).
The half-angle formula for sine can be obtained by replacing with / and taking the square-root of both sides: (/) = () /. Note that this figure also illustrates, in the vertical line segment E B ¯ {\displaystyle {\overline {EB}}} , that sin 2 θ = 2 sin θ cos θ {\displaystyle \sin 2\theta =2\sin \theta \cos \theta } .
Madhava's sine table is the table of trigonometric sines constructed by the 14th century Kerala mathematician-astronomer Madhava of Sangamagrama (c. 1340 – c. 1425). The table lists the jya-s or Rsines of the twenty-four angles from 3.75 ° to 90° in steps of 3.75° (1/24 of a right angle , 90°).
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.