Search results
Results from the WOW.Com Content Network
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide. Some commonly industrially produced Koch acids include pivalic acid , 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [ 1 ]
The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group –COOH. Sulfonic acids, containing the group –SO 2 OH, are relatively stronger acids. Alcohols, with –OH, can act as acids but they are usually very weak.
As an example, electrolysis of acetic acid yields ethane and carbon dioxide: CH 3 COOH → CH 3 COO − → CH 3 COO· → CH 3 · + CO 2 2CH 3 · → CH 3 CH 3. Another example is the synthesis of 2,7-dimethyl-2,7-dinitrooctane from 4-methyl-4-nitrovaleric acid: [3] The Kolbe reaction has also been occasionally used in cross-coupling reactions.
The general formula of a carboxylic acid is often written as R−COOH or R−CO 2 H, sometimes as R−C(O)OH with R referring to an organyl group (e.g., alkyl, alkenyl, aryl), or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a ...
Acyl halides are rather reactive compounds often synthesized to be used as intermediates in the synthesis of other organic compounds. For example, an acyl halide can react with: water, to form a carboxylic acid. This hydrolysis is the most heavily exploited reaction for acyl halides as it occurs in the industrial synthesis of acetic acid.
The oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (gem-diol, R-CH(OH) 2) by reaction with water. Thus, the oxidation of a primary alcohol at the aldehyde level without further oxidation to the carboxylic acid is possible by performing the reaction ...
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?
For example, the reaction of acetic anhydride with ethanol yields ethyl acetate: (CH 3 CO) 2 O + CH 3 CH 2 OH → CH 3 CO 2 CH 2 CH 3 + CH 3 COOH. Often a base such as pyridine is added to function as catalyst. In specialized applications, Lewis acidic scandium salts have also proven effective catalysts. [12]