enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Here is a proof by contradiction that log 2 3 is irrational (log 2 31.58 > 0). Assume log 2 3 is rational. For some positive integers m and n , we have

  3. Square root of 7 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_7

    The rectangle that bounds an equilateral triangle of side 2, or a regular hexagon of side 1, has size square root of 3 by square root of 4, with a diagonal of square root of 7. A Logarex system Darmstadt slide rule with 7 and 6 on A and B scales, and square roots of 6 and of 7 on C and D scales, which can be read as slightly less than 2.45 and ...

  4. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  5. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the mth root of an integer N as the ratio a ⁄ b of two integers a and b, that share no common prime factor, except in cases in which b = 1.

  6. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The four 4th roots of −1, none of which are real The three 3rd roots of −1, one of which is a negative real. An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x:

  7. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers. [3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0.

  8. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    Likewise, tan ⁠ 3 π / 16 ⁠, tan ⁠ 7 π / 16 ⁠, tan ⁠ 11 π / 16 ⁠, and tan ⁠ 15 π / 16 ⁠ satisfy the irreducible polynomial x 4 − 4x 3 − 6x 2 + 4x + 1 = 0, and so are conjugate algebraic integers. This is the equivalent of angles which, when measured in degrees, have rational numbers. [2] Some but not all irrational ...

  9. Hermite's problem - Wikipedia

    en.wikipedia.org/wiki/Hermite's_problem

    Rational numbers are algebraic numbers that satisfy a polynomial of degree 1, while quadratic irrationals are algebraic numbers that satisfy a polynomial of degree 2. For both these sets of numbers we have a way to construct a sequence of natural numbers (a n) with the property that each sequence gives a unique real number and such that this real number belongs to the corresponding set if and ...