Search results
Results from the WOW.Com Content Network
These groups are characterized by an n-fold improper rotation axis S n, where n is necessarily even. The S 2 group is the same as the C i group in the nonaxial groups section. S n groups with an odd value of n are identical to C nh groups of same n and are therefore not considered here (in particular, S 1 is identical to C s).
For example, in its ground (N) electronic state the ethylene molecule C 2 H 4 has D 2h point group symmetry whereas in the excited (V) state it has D 2d symmetry. To treat these two states together it is necessary to allow torsion and to use the double group of the permutation-inversion group G 16 .
For example, the point groups 1, 2, and m contain different geometric symmetry operations, (inversion, rotation, and reflection, respectively) but all share the structure of the cyclic group C 2. All isomorphic groups are of the same order, but not all groups of the same order are isomorphic.
The table below organizes the space groups of the monoclinic crystal system by crystal class. It lists the International Tables for Crystallography space group numbers, [ 2 ] followed by the crystal class name, its point group in Schoenflies notation , Hermann–Mauguin (international) notation , orbifold notation, and Coxeter notation, type ...
For example, 4 1 /a means that the crystallographic axis in question contains both a 4 1 screw axis as well as a glide plane along a. In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry ...
The space groups with given point group are numbered by 1, 2, 3, ... (in the same order as their international number) and this number is added as a superscript to the Schönflies symbol for the corresponding point group. For example, groups numbers 3 to 5 whose point group is C 2 have Schönflies symbols C 1 2, C 2 2, C 3 2.
Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules. Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper ...
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).