Search results
Results from the WOW.Com Content Network
Pump Characteristic curve; the head produced reduces with the discharge of the pump. Pump curves are quite useful in the pump selection, testing, operation and maintenance. Pump performance curve is a graph of differential head against the operating flow rate. They specify performance and efficiency characteristics.
Some internal gear pumps have an additional, crescent-shaped seal (shown above, right). This crescent functions to keep the gears separated and also reduces eddy currents. Pump formulas: Flow rate = pumped volume per rotation × rotational speed; Power = flow rate × pressure; Power in HP ≈ flow rate in US gal/min × (pressure in lbf/in 2)/1714
Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows: A diagram which shows the interconnection of process equipment and the instrumentation used to control the process.
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy (hydrostatic energy i.e. flow, pressure). Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet.
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
A diagram of a pumpjack. A pumpjack is the overground drive for a reciprocating piston pump in an oil well. [1] It is used to mechanically lift liquid out of the well if there is not enough bottom hole pressure for the liquid to flow all the way to the surface. The arrangement is often used for onshore wells. Pumpjacks are common in oil-rich areas.
Francis type units cover a head range from 40 to 600 m (130 to 2,000 ft), and their connected generator output power varies from just a few kilowatts up to 1000 MW. Large Francis turbines are individually designed for each site to operate with the given water flow and water head at the highest possible efficiency, typically over 90% (to 99% [6]).