Search results
Results from the WOW.Com Content Network
Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Optical mineralogy is used to identify the mineralogical composition of geological materials in order to help reveal their origin and evolution. Some of the properties and techniques used include:
Under cross polarized light (XPL) quartz displays low interference colors and is usually the defining mineral used to determine if the thin section is at standardized thickness of 30 microns as quartz will only display up to a very pale yellow interference color and no further at that thickness, and it is very common in most rocks so it will ...
A petrographic microscope is a type of optical microscope used to identify rocks and minerals in thin sections. The microscope is used in optical mineralogy and petrography, a branch of petrology which focuses on detailed descriptions of rocks. The method includes aspects of polarized light microscopy (PLM).
The process of identifying minerals under the microscope is fairly subtle, but also mechanistic – it would be possible to develop an identification key that would allow a computer to do it. The more difficult and skilful part of optical petrography is identifying the interrelationships between grains and relating them to features seen in hand ...
Degrees which mineral turns black in XPL in microscope. Zoning; Mineral zoning present. Mineral texture; Porphyritic (large xenocryst surrounded by fine crystals), Melange (mix of minerals), Poikilitic (one mineral grown around another), Polymorph (same composition but different shape), Hetrogenous (many types of minerals), Homogeneous (one ...
Michel-Lévy interference colour chart issued by Zeiss Microscopy. In optical mineralogy, an interference colour chart, also known as the Michel-Levy chart, is a tool first developed by Auguste Michel-Lévy to identify minerals in thin section using a petrographic microscope.
Ceramic petrography (or ceramic petrology) is a laboratory-based scientific archaeological technique that examines the mineralogical and microstructural composition of ceramics and other inorganic materials under the polarised light microscope in order to interpret aspects of the provenance and technology of artefacts.
A conoscopic interference pattern or interference figure is a pattern of birefringent colours crossed by dark bands (or isogyres), which can be produced using a geological petrographic microscope for the purposes of mineral identification and investigation of mineral optical and chemical properties.