enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  3. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2 ) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2 ).

  5. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    In this case the field is gravity, so Φ = −ρ f gz where g is the gravitational acceleration, ρ f is the mass density of the fluid. Taking the pressure as zero at the surface, where z is zero, the constant will be zero, so the pressure inside the fluid, when it is subject to gravity, is =.

  6. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.

  7. Pressure-gradient force - Wikipedia

    en.wikipedia.org/wiki/Pressure-gradient_force

    The acceleration resulting from the pressure gradient is then, =. The effects of the pressure gradient are usually expressed in this way, in terms of an acceleration, instead of in terms of a force. We can express the acceleration more precisely, for a general pressure P {\displaystyle P} as, a → = − 1 ρ ∇ → P . {\displaystyle {\vec {a ...

  8. Buoyancy - Wikipedia

    en.wikipedia.org/wiki/Buoyancy

    In this case the field is gravity, so Φ = −ρ f gz where g is the gravitational acceleration, ρ f is the mass density of the fluid. Taking the pressure as zero at the surface, where z is zero, the constant will be zero, so the pressure inside the fluid, when it is subject to gravity, is =.

  9. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    The three terms are used to define the state of a closed system of an incompressible, constant-density fluid. When the dynamic pressure is divided by the product of fluid density and acceleration due to gravity, g, the result is called velocity head, which is used in head equations like the one used for pressure head and hydraulic head.