Search results
Results from the WOW.Com Content Network
The atomic form factor depends on the type of scattering, which in turn depends on the nature of the incident radiation, typically X-ray, electron or neutron. The common feature of all form factors is that they involve a Fourier transform of a spatial density distribution of the scattering object from real space to momentum space (also known as ...
The structure factor is a critical tool in the interpretation of scattering patterns (interference patterns) obtained in X-ray, electron and neutron diffraction experiments. Confusingly, there are two different mathematical expressions in use, both called 'structure factor'.
Results are generally communicated as the dynamic structure factor (also called inelastic scattering law) (,), sometimes also as the dynamic susceptibility ′ ′ (,) where the scattering vector is the difference between incoming and outgoing wave vector, and is the energy change experienced by the sample (negative that of the scattered neutron).
The four-factor formula, ... is the average lethargy gain per scattering event. Lethargy is defined as decrease in neutron energy. ... is the probability that a fast ...
Here (,), is called the intermediate scattering function and can be measured by neutron spin echo spectroscopy. The intermediate scattering function is the spatial Fourier transform of the van Hove function G ( r → , t ) {\displaystyle G({\vec {r}},t)} : [ 2 ] [ 3 ]
The Debye–Waller factor (DWF), named after Peter Debye and Ivar Waller, is used in condensed matter physics to describe the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion. [1] [2] It is also called the B factor, atomic B factor, or temperature factor.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material.