enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Raman scattering - Wikipedia

    en.wikipedia.org/wiki/Raman_scattering

    Raman spectroscopy is used to analyze a wide range of materials, including gases, liquids, and solids. Highly complex materials such as biological organisms and human tissue [26] can also be analyzed by Raman spectroscopy. For solid materials, Raman scattering is used as a tool to detect high-frequency phonon and magnon excitations.

  3. Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Raman_spectroscopy

    Energy-level diagram showing the states involved in Raman spectra. Raman spectroscopy (/ ˈ r ɑː m ən /) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. [1]

  4. Resonance Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Resonance_Raman_spectroscopy

    Energy level diagram showing relationship between Rayleigh, Raman, and resonance Raman scattering and fluorescence. Resonance Raman spectroscopy (RR spectroscopy or RRS) is a variant of Raman spectroscopy in which the incident photon energy is close in energy to an electronic transition of a compound or material under examination. [1]

  5. Raman microscope - Wikipedia

    en.wikipedia.org/wiki/Raman_microscope

    The Raman microscope is a laser-based microscopic device used to perform Raman spectroscopy. [1] The term MOLE (molecular optics laser examiner) is used to refer to the Raman-based microprobe. [ 1 ] The technique used is named after C. V. Raman , who discovered the scattering properties in liquids.

  6. Stimulated Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Stimulated_Raman_spectroscopy

    Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS), is a form of spectroscopy employed in physics, chemistry, biology, and other fields. . The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational (or rotational ...

  7. Vibrational spectroscopy of linear molecules - Wikipedia

    en.wikipedia.org/wiki/Vibrational_spectroscopy...

    Furthermore, a vibration will be Raman active if there is a change in the polarizability of the molecule and if it has the same symmetry as one of the direct products of the x, y, z coordinates. To determine which modes are Raman active, the irreducible representation corresponding to xy, xz, yz, x 2 , y 2 , and z 2 are checked with the ...

  8. Rule of mutual exclusion - Wikipedia

    en.wikipedia.org/wiki/Rule_of_mutual_exclusion

    It states that no normal modes can be both Infrared and Raman active in a molecule that possesses a center of symmetry. This is a powerful application of group theory to vibrational spectroscopy, and allows one to easily detect the presence of this symmetry element by comparison of the IR and Raman spectra generated by the same molecule. [1]

  9. Raman amplification - Wikipedia

    en.wikipedia.org/wiki/Raman_amplification

    Raman amplification / ˈ r ɑː m ən / [1] is based on the stimulated Raman scattering (SRS) phenomenon, when a lower frequency 'signal' photon induces the inelastic scattering of a higher-frequency 'pump' photon in an optical medium in the nonlinear regime. As a result of this, another 'signal' photon is produced, with the surplus energy ...