enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  3. Astronomical seeing - Wikipedia

    en.wikipedia.org/wiki/Astronomical_seeing

    The astronomical seeing conditions at an observatory can be conveniently described by the parameters r 0 and t 0. For telescopes with diameters smaller than r 0 , the resolution of long-exposure images is determined primarily by diffraction and the size of the Airy pattern and thus is inversely proportional to the telescope diameter.

  4. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    The IAU abandoned the defined value of k in 2012 in favour of a defined value of the astronomical unit of 1.495 978 707 00 × 10 11 m exactly, while the strength of the gravitational force is now to be expressed in the separate standard gravitational parameter G M ☉, measured in SI units of m 3 ⋅s −2.

  5. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Calculations in celestial mechanics can also be carried out using the units of solar masses, mean solar days and astronomical units rather than standard SI units. For this purpose, the Gaussian gravitational constant was historically in widespread use, k = 0.017 202 098 95 radians per day , expressing the mean angular velocity of the Sun ...

  6. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    In orbital mechanics (a subfield of celestial mechanics), Gauss's method is used for preliminary orbit determination from at least three observations (more observations increases the accuracy of the determined orbit) of the orbiting body of interest at three different times.

  7. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit , values between 0 and 1 form an elliptic orbit , 1 is a parabolic escape orbit (or capture orbit), and greater than ...

  8. Gravitational lensing formalism - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lensing...

    In most fields of astronomy, the ellipticity is defined as , where = is the axis ratio of the ellipse. In weak gravitational lensing , two different definitions are commonly used, and both are complex quantities which specify both the axis ratio and the position angle ϕ {\displaystyle \phi ~} :

  9. Surface gravity - Wikipedia

    en.wikipedia.org/wiki/Surface_gravity

    The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass.