Search results
Results from the WOW.Com Content Network
Like the sine, the cosine and tangent are replaced with rational equivalents, called the "cross" and "twist", and Divine Proportions develops various analogues of trigonometric identities involving these quantities, [3] including versions of the Pythagorean theorem, law of sines and law of cosines. [4]
Having attending several of Norman Wildeberger's talks, the rationale behind rational trigonometry is that the concept of an angle belongs to a circle (ie, Euler's formula), and that the concept of spread is far more natural for a triangle (c.f. Thales' theorem). Angles and distance also break down in fields other than the real numbers, whereas ...
In the form of sin 2 (θ) the haversine of the double-angle Δ describes the relation between spreads and angles in rational trigonometry, a proposed reformulation of metrical planar and solid geometries by Norman John Wildberger since 2005. [49]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
I just created this article, because Wildberger clearly needed an article, as he has made an important contribution to mathematics with his new subject known as "rational trigonometry."Dratman 01:56, 17 September 2011 (UTC) I think there have been changes since the Wikipedia:Articles for deletion/Norman J. Wildberger discussion. Wildberger is ...
In trigonometry, the Snellius–Pothenot problem is a problem first described in the context of planar surveying.Given three known points A, B, C, an observer at an unknown point P observes that the line segment AC subtends an angle α and the segment CB subtends an angle β; the problem is to determine the position of the point P.
An illustration of the ratio interpretation of spread, a geometric quantity introduced in the theory of rational geometry. Date: 19 November 2007: Source: Similar to a diagram in Wildberger, Norman J. (2007). "A Rational Approach to Trigonometry". Math Horizons November 2007: 16–20. This version created by bdesham in Inkscape. Author
A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).