enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    A complete bipartite graph with m = 5 and n = 3 The Heawood graph is bipartite.. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in .

  3. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]

  4. Maximum weight matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_weight_matching

    In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem , in which the input is restricted to be a bipartite graph , and the matching constrained to be have cardinality that of the ...

  5. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Alternatively, describing the problem using graph theory: The assignment problem consists of finding, in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment.

  6. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    Via this result, the minimum vertex cover, maximum independent set, and maximum vertex biclique problems may be solved in polynomial time for bipartite graphs. Hall's marriage theorem provides a characterization of bipartite graphs which have a perfect matching and the Tutte theorem provides a characterization for arbitrary graphs.

  7. Hall's marriage theorem - Wikipedia

    en.wikipedia.org/wiki/Hall's_marriage_theorem

    The graph theoretic formulation of Marshal Hall's extension of the marriage theorem can be stated as follows: Given a bipartite graph with sides A and B, we say that a subset C of B is smaller than or equal in size to a subset D of A in the graph if there exists an injection in the graph (namely, using only edges of the graph) from C to D, and ...

  8. Hopcroft–Karp algorithm - Wikipedia

    en.wikipedia.org/wiki/Hopcroft–Karp_algorithm

    In computer science, the Hopcroft–Karp algorithm (sometimes more accurately called the Hopcroft–Karp–Karzanov algorithm) [1] is an algorithm that takes a bipartite graph as input and produces a maximum-cardinality matching as output — a set of as many edges as possible with the property that no two edges share an endpoint.

  9. Convex bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Convex_bipartite_graph

    In the mathematical field of graph theory, a convex bipartite graph is a bipartite graph with specific properties. A bipartite graph, (U ∪ V, E), is said to be convex over the vertex set U if U can be enumerated such that for all v ∈ V the vertices adjacent to v are consecutive. Convexity over V is defined analogously. A bipartite graph (U ...