enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Catalan number - Wikipedia

    en.wikipedia.org/wiki/Catalan_number

    This proof is based on the Dyck words interpretation of the Catalan numbers, so is the number of ways to correctly match n pairs of brackets. We denote a (possibly empty) correct string with c and its inverse with c' .

  3. Cassini and Catalan identities - Wikipedia

    en.wikipedia.org/wiki/Cassini_and_Catalan_identities

    This explains why some give 1879 and others 1886 as the date for Catalan's identity (Tuenter 2022, p. 314). The Hungarian-British mathematician Steven Vajda (1901–95) published a book on Fibonacci numbers (Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, 1989) which contains the identity carrying his name.

  4. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.

  5. Lobb number - Wikipedia

    en.wikipedia.org/wiki/Lobb_number

    Lobb numbers form a natural generalization of the Catalan numbers, which count the complete strings of balanced parentheses of a given length. Thus, the nth Catalan number equals the Lobb number L 0,n. [2] They are named after Andrew Lobb, who used them to give a simple inductive proof of the formula for the n th Catalan number. [3]

  6. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    Similarly, the number of ways to pay n ≥ 0 cents in coin denominations of values in the set {1, 5, 10, 25, 50} (i.e., in pennies, nickels, dimes, quarters, and half dollars, respectively) is generated by the product =, and moreover, if we allow the n cents to be paid in coins of any positive integer denomination, we arrive at the generating ...

  7. Schröder–Hipparchus number - Wikipedia

    en.wikipedia.org/wiki/Schröder–Hipparchus_number

    Substituting k = 1 into this formula gives the Catalan numbers and substituting k = 2 into this formula gives the Schröder–Hipparchus numbers. [7] In connection with the property of Schröder–Hipparchus numbers of counting faces of an associahedron, the number of vertices of the associahedron is given by the Catalan numbers.

  8. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove commutativity (a + b = b + a) by applying induction on the natural number b. First we prove the base cases b = 0 and b = S (0) = 1 (i.e. we prove that 0 and 1 commute with everything). The base case b = 0 follows immediately from the identity element property (0 is an additive identity ), which has been proved above: a + 0 = a = 0 + a .

  9. Catalan's conjecture - Wikipedia

    en.wikipedia.org/wiki/Catalan's_conjecture

    Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University.