Search results
Results from the WOW.Com Content Network
Molar mass: 158.032 g·mol −1 Appearance Purplish-bronze-gray needles ... Potassium permanganate is an inorganic compound with the chemical formula KMnO 4.
potassium permanganate has a molar mass of 158.034(1) g mol −1, and reacts with five moles of electrons per mole of potassium permanganate, so its equivalent weight is 158.034(1) g mol −1 /5 eq mol −1 = 31.6068(3) g eq −1. Historically, the equivalent weights of the elements were often determined by studying their reactions with oxygen.
A permanganate (/ p ər ˈ m æ ŋ ɡ ə n eɪ t, p ɜːr-/) [1] is a chemical compound with the manganate(VII) ion, MnO − 4, the conjugate base of permanganic acid. Because the manganese atom has a +7 oxidation state, the permanganate(VII) ion is a strong oxidising agent. The ion is a transition metal ion with a tetrahedral structure. [2]
Potassium is the eighth or ninth most common element by mass (0.2%) in the human body, so that a 60 kg adult contains a total of about 120 g of potassium. [84] The body has about as much potassium as sulfur and chlorine, and only calcium and phosphorus are more abundant (with the exception of the ubiquitous CHON elements). [85]
Potassium permanganate will decompose into potassium manganate, manganese dioxide and oxygen gas: 2 KMnO 4 → K 2 MnO 4 + MnO 2 + O 2. This reaction is a laboratory method to prepare oxygen, but produces samples of potassium manganate contaminated with MnO 2. The former is soluble and the latter is not.
Similar to potassium permanganate, the two-step decomposition of caesium permanganate leads to the formation of caesium manganate intermediates. It breaks down into manganese dioxide, caesium oxide and oxygen. [5] The decomposition temperature is between 200 and 300 °C. [6] Drift-away oxygen caused an 8% mass loss in the product. [6]
A Path Out Of Trouble How one state supports its teenagers while a neighboring state punishes them. By Rebecca Klein and Kyle Spencer. Published Thursday, December 15, 2016 7:01 AM EST
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.