Search results
Results from the WOW.Com Content Network
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
Diagram of the latent diffusion architecture used by Stable Diffusion The denoising process used by Stable Diffusion. The model generates images by iteratively denoising random noise until a configured number of steps have been reached, guided by the CLIP text encoder pretrained on concepts along with the attention mechanism, resulting in the desired image depicting a representation of the ...
[22] [23] Users retained the ownership of resulting output regardless of models used. [24] [25] The models can be used either online or locally by using generative AI user interfaces such as ComfyUI and Stable Diffusion WebUI Forge (a fork of Automatic1111 WebUI). [8] [26] An improved flagship model, Flux 1.1 Pro was released on 2 October 2024.
AUTOMATIC1111 Stable Diffusion Web UI (SD WebUI, A1111, or Automatic1111 [3]) is an open source generative artificial intelligence program that allows users to generate images from a text prompt. [4] It uses Stable Diffusion as the base model for its image capabilities together with a large set of extensions and features to customize its output.
The goal of diffusion models is to learn a diffusion process for a given dataset, such that the process can generate new elements that are distributed similarly as the original dataset. A diffusion model models data as generated by a diffusion process, whereby a new datum performs a random walk with drift through the space of all possible data. [2]
DreamBooth can be used to fine-tune models such as Stable Diffusion, where it may alleviate a common shortcoming of Stable Diffusion not being able to adequately generate images of specific individual people. [4] Such a use case is quite VRAM intensive, however, and thus cost-prohibitive for hobbyist users. [4]
Three examples of Turing patterns Six stable states from Turing equations, the last one forms Turing patterns. The Turing pattern is a concept introduced by English mathematician Alan Turing in a 1952 paper titled "The Chemical Basis of Morphogenesis" which describes how patterns in nature, such as stripes and spots, can arise naturally and autonomously from a homogeneous, uniform state.
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.