Search results
Results from the WOW.Com Content Network
Its unit element is the class of the ordinary 2-sphere. Furthermore, if a denotes the class of the torus, and b denotes the class of the projective plane, then every element c of the monoid has a unique expression in the form c = na + mb where n is a positive integer and m = 0, 1, or 2. We have 3b = a + b.
A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.
Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"
Transformation semigroups and monoids. The set of continuous functions from a topological space to itself with composition of functions forms a monoid with the identity function acting as the identity. More generally, the endomorphisms of any object of a category form a monoid under composition. The product of faces of an arrangement of ...
The following algorithm, known as Rödseth's algorithm, [10] [11] can be used to compute the Frobenius number of a numerical semigroup S generated by {a 1, a 2, a 3} where a 1 < a 2 < a 3 and gcd ( a 1, a 2, a 3) = 1. Its worst-case complexity is not as good as Greenberg's algorithm [12] but it is much simpler to describe.
tensor graph product (or direct graph product, categorical graph product, cardinal graph product, Kronecker graph product): it is a commutative and associative operation (for unlabelled graphs), zig-zag graph product; [3] graph product based on other products: rooted graph product: it is an associative operation (for unlabelled but rooted ...