enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    Binary may be converted to and from hexadecimal more easily. This is because the radix of the hexadecimal system (16) is a power of the radix of the binary system (2). More specifically, 16 = 2 4, so it takes four digits of binary to represent one digit of hexadecimal, as shown in the adjacent table.

  3. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    Computer engineers often need to write out binary quantities, but in practice writing out a binary number such as 1001001101010001 is tedious and prone to errors. Therefore, binary quantities are written in a base-8, or "octal", or, much more commonly, a base-16, "hexadecimal" (hex), number format. In the decimal system, there are 10 digits, 0 ...

  4. Bibi-binary - Wikipedia

    en.wikipedia.org/wiki/Bibi-binary

    The notational system directly and logically encodes the binary representations of the digits in a hexadecimal (base sixteen) numeral. In place of the Arabic numerals 0–9 and letters A–F currently used in writing hexadecimal numerals, it presents sixteen newly devised symbols (thus evading any risk of confusion with the decimal system).

  5. Hexadecimal - Wikipedia

    en.wikipedia.org/wiki/Hexadecimal

    Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.

  6. Binary code - Wikipedia

    en.wikipedia.org/wiki/Binary_code

    The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness. Leibniz's system uses 0 and 1, like the modern ...

  7. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    Positional systems obtained by grouping binary digits by three (octal numeral system) or four (hexadecimal numeral system) are commonly used. For very large integers, bases 2 32 or 2 64 (grouping binary digits by 32 or 64, the length of the machine word) are used, as, for example, in GMP.

  8. Radix - Wikipedia

    en.wikipedia.org/wiki/Radix

    The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, since sixteen is the fourth power of two; for example, hexadecimal 78 16 is binary 111 1000 2. Similarly, every octal digit corresponds to a unique sequence of ...

  9. Binary data - Wikipedia

    en.wikipedia.org/wiki/Binary_data

    A binary variable is a random variable of binary type, meaning with two possible values. Independent and identically distributed (i.i.d.) binary variables follow a Bernoulli distribution , but in general binary data need not come from i.i.d. variables.