enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dense set - Wikipedia

    en.wikipedia.org/wiki/Dense_set

    In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine ...

  3. Nowhere dense set - Wikipedia

    en.wikipedia.org/wiki/Nowhere_dense_set

    For example, the integers are nowhere dense among the reals, whereas the interval (0, 1) is not nowhere dense. A countable union of nowhere dense sets is called a meagre set. Meagre sets play an important role in the formulation of the Baire category theorem, which is used in the proof of several fundamental results of functional analysis.

  4. Dense order - Wikipedia

    en.wikipedia.org/wiki/Dense_order

    This makes the theory of dense linear orders without bounds an example of an ω-categorical theory where ω is the smallest limit ordinal. For example, there exists an order-isomorphism between the rational numbers and other densely ordered countable sets including the dyadic rationals and the algebraic numbers.

  5. Dense-in-itself - Wikipedia

    en.wikipedia.org/wiki/Dense-in-itself

    A simple example of a set that is dense-in-itself but not closed (and hence not a perfect set) is the set of irrational numbers (considered as a subset of the real numbers). This set is dense-in-itself because every neighborhood of an irrational number x {\displaystyle x} contains at least one other irrational number y ≠ x {\displaystyle y ...

  6. Meagre set - Wikipedia

    en.wikipedia.org/wiki/Meagre_set

    For example, in the interval [,] fat Cantor sets, like the Smith–Volterra–Cantor set, are closed nowhere dense and they can be constructed with a measure arbitrarily close to The union of a countable number of such sets with measure approaching 1 {\displaystyle 1} gives a meagre subset of [ 0 , 1 ] {\displaystyle [0,1]} with measure 1 ...

  7. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    This notion of "missing points" can be made precise. In fact, every metric space has a unique completion, which is a complete space that contains the given space as a dense subset. For example, [0, 1] is the completion of (0, 1), and the real numbers are the completion of the rationals.

  8. Cantor's isomorphism theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_isomorphism_theorem

    In order theory and model theory, branches of mathematics, Cantor's isomorphism theorem states that every two countable dense unbounded linear orders are order-isomorphic.For instance, Minkowski's question-mark function produces an isomorphism (a one-to-one order-preserving correspondence) between the numerical ordering of the rational numbers and the numerical ordering of the dyadic rationals.

  9. Natural density - Wikipedia

    en.wikipedia.org/wiki/Natural_density

    A subset A of positive integers has natural density α if the proportion of elements of A among all natural numbers from 1 to n converges to α as n tends to infinity.. More explicitly, if one defines for any natural number n the counting function a(n) as the number of elements of A less than or equal to n, then the natural density of A being α exactly means that [1]