Search results
Results from the WOW.Com Content Network
Neurotransmission (Latin: transmissio "passage, crossing" from transmittere "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), and bind to and react with the receptors on the dendrites of another neuron (the postsynaptic neuron) a ...
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
Postsynaptic potentials occur when the presynaptic neuron releases neurotransmitters into the synaptic cleft. These neurotransmitters bind to receptors on the postsynaptic terminal, which may be a neuron , or a muscle cell in the case of a neuromuscular junction . [ 1 ]
When an action potential fires at the dendritic spine where the action potential is initiated from the presynaptic terminal to the post synaptic terminal. This action potential is then carried down the length of the dendrite and then is propagated down the length of the axon in order to get the presynaptic terminal to then perpetuate the ...
This depolarizing current reaches the presynaptic terminal, and the membrane depolarization that it causes there initiates the opening of voltage-gated calcium channels present on the presynaptic membrane. There is high concentration of calcium in the synaptic cleft between the two participating neurons (presynaptic and postsynaptic). This ...
When the presynaptic terminal is electrically stimulated, an array of molecules embedded in the membrane are activated, and cause the contents of the vesicles to be released into the narrow space between the presynaptic and postsynaptic membranes, called the synaptic cleft.
A diagram of temporal summation. At any given moment, a neuron may receive postsynaptic potentials from thousands of other neurons. Whether threshold is reached, and an action potential generated, depends upon the spatial (i.e. from multiple neurons) and temporal (from a single neuron) summation of all inputs at that moment.
A schematic diagram showing a field potential recording from rat hippocampus. At the left is a schematic diagram of a presynaptic terminal and postsynaptic neuron. This is meant to represent a large population of synapses and neurons. When the synapse releases glutamate onto the postsynaptic cell, it opens ionotropic glutamate receptor channels.