enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Substrate-level phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Substrate-level_phosphory...

    Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...

  3. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    ADP and phosphate are needed as precursors to synthesize ATP in the payoff reactions of the TCA cycle and oxidative phosphorylation mechanism. [4] During the payoff phase of glycolysis, the enzymes phosphoglycerate kinase and pyruvate kinase facilitate the addition of a phosphate group to ADP by way of substrate-level phosphorylation .

  4. ATP hydrolysis - Wikipedia

    en.wikipedia.org/wiki/ATP_hydrolysis

    Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.

  5. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    The above reactions are balanced if P i represents the H 2 PO 4 − ion, ADP and GDP the ADP 2− and GDP 2− ions, respectively, and ATP and GTP the ATP 3− and GTP 3− ions, respectively. The total number of ATP molecules obtained after complete oxidation of one glucose in glycolysis, citric acid cycle, and oxidative phosphorylation is ...

  6. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The ATP-ADP translocase (also called adenine nucleotide translocase, ANT) is an antiporter and exchanges ADP and ATP across the inner membrane. The driving force is due to the ATP (−4) having a more negative charge than the ADP (−3), and thus it dissipates some of the electrical component of the proton electrochemical gradient.

  7. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    ATP synthase is the enzyme that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the free energy difference to convert phosphorylate adenosine diphosphate (ADP) into ATP. The ATP synthase contains two parts: CF0 (present in thylakoid membrane) and CF1 (protrudes on the outer surface of thylakoid membrane).

  8. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (P i). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is: ADP + P i + 2H + out ⇌ ATP + H 2 O + 2H + in

  9. Futile cycle - Wikipedia

    en.wikipedia.org/wiki/Futile_cycle

    That is, hydrolysis of ATP without any useful metabolic work being done. Clearly, if these two reactions were allowed to proceed simultaneously at a high rate in the same cell, a large amount of chemical energy would be dissipated as heat. This uneconomical process has therefore been called a futile cycle. [5]