Search results
Results from the WOW.Com Content Network
In chemistry, a Zintl phase is a product of a reaction between a group 1 (alkali metal) or group 2 (alkaline earth metal) and main group metal or metalloid (from groups 13, 14, 15, or 16). It is characterized by intermediate metallic / ionic bonding.
In crystallography, a crystallographic point group is a three dimensional point group whose symmetry operations are compatible with a three dimensional crystallographic lattice. According to the crystallographic restriction it may only contain one-, two-, three-, four- and sixfold rotations or rotoinversions. This reduces the number of ...
Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules. Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper ...
In chemistry, the square antiprismatic molecular geometry describes the shape of compounds where eight atoms, groups of atoms, or ligands are arranged around a central atom, defining the vertices of a square antiprism. [1]
In chemistry, the dodecahedral molecular geometry describes the shape of compounds where eight atoms or groups of atoms or ligands are arranged around a central atom defining the vertices of a snub disphenoid (also known as a trigonal dodecahedron).
Symmetry elements of formaldehyde. C 2 is a two-fold rotation axis. σ v and σ v ' are two non-equivalent reflection planes.. In chemistry, molecular symmetry describes the symmetry present in molecules and the classification of these molecules according to their symmetry.
[2] [3] [page needed] Pentagonal bipyramids are claimed to be promising coordination geometries for lanthanide -based single-molecule magnets , since they present no extradiagonal crystal field terms, therefore minimising spin mixing, and all of their diagonal terms are in first approximation protected from low-energy vibrations, minimising ...
In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion compound.