Search results
Results from the WOW.Com Content Network
A Sudoku starts with some cells containing numbers (clues), and the goal is to solve the remaining cells. Proper Sudokus have one solution. [1] Players and investigators use a wide range of computer algorithms to solve Sudokus, study their properties, and make new puzzles, including Sudokus with interesting symmetries and other properties.
The Dancing Links algorithm solving a polycube puzzle In computer science , dancing links ( DLX ) is a technique for adding and deleting a node from a circular doubly linked list . It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem . [ 1 ]
LDPC decoding is a common use-case for belief propagation, with slight modifications this approach can be used for solving Sudoku codes. [4] The constraint satisfaction using a tanner graph is shown in the figure on the right. denotes the entries of the sudoku in row-scan order.
Backtracking is an important tool for solving constraint satisfaction problems, [2] such as crosswords, verbal arithmetic, Sudoku, and many other puzzles. It is often the most convenient technique for parsing , [ 3 ] for the knapsack problem and other combinatorial optimization problems.
Knuth showed that Algorithm X can be implemented efficiently on a computer using dancing links in a process Knuth calls "DLX". DLX uses the matrix representation of the exact cover problem, implemented as doubly linked lists of the 1s of the matrix: each 1 element has a link to the next 1 above, below, to the left, and to the right of itself.
The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.
In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of systematically checking all possible candidates for whether or not each candidate satisfies the problem's statement.
Killer sudoku (also killer su doku, sumdoku, sum doku, sumoku, addoku, or samunanpure サムナンプレ sum-num(ber) pla(ce)) is a puzzle that combines elements of sudoku and kakuro. Despite the name, the simpler killer sudokus can be easier to solve than regular sudokus, depending on the solver's skill at mental arithmetic ; the hardest ones ...