enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Incompressible flow - Wikipedia

    en.wikipedia.org/wiki/Incompressible_flow

    In fluid dynamics, a flow is considered incompressible if the divergence of the flow velocity is zero. However, related formulations can sometimes be used, depending on the flow system being modelled. Some versions are described below: Incompressible flow: =. This can assume either constant density (strict incompressible) or varying density flow.

  3. Compressible flow - Wikipedia

    en.wikipedia.org/wiki/Compressible_flow

    Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]

  4. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).

  5. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    From a strictly aerodynamic point of view, the term should refer only to those side-effects arising as a result of the changes in airflow from an incompressible fluid (similar in effect to water) to a compressible fluid (acting as a gas) as the speed of sound is approached. There are two effects in particular, wave drag and critical mach.

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The mathematical characters of the incompressible and compressible Euler equations are rather different. For constant fluid density, the incompressible equations can be written as a quasilinear advection equation for the fluid velocity together with an elliptic Poisson's equation for the pressure.

  7. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  8. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible Navier–Stokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.

  9. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The fluid equation of state, often unimportant for incompressible flows, is vital in the analysis of compressible flows. Also, temperature variations for compressible flows are usually significant and thus the energy equation is important. Curious phenomena can occur with compressible flows. For simplicity, the gas is assumed to be an ideal gas.