Search results
Results from the WOW.Com Content Network
Molecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms [1] and energy scales around several electron volts. [2]: 1356 [3] The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments.
Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. The unifying feature is use of molecular building blocks to fabricate electronic components.
The impact of valence theory declined during the 1960s and 1970s as molecular orbital theory grew in usefulness as it was implemented in large digital computer programs. Since the 1980s, the more difficult problems, of implementing valence bond theory into computer programs, have been solved largely, and valence bond theory has seen a resurgence.
The theory was extended to map chemical space with molecular assembly trees, demonstrating the application of this approach in drug discovery, [2] in particular in research of new opiate-like molecules by connecting the "assembly pool elements through the same pattern in which they were disconnected from their parent compound(s)".
The Car–Parrinello method is a type of molecular dynamics, usually employing periodic boundary conditions, planewave basis sets, and density functional theory, proposed by Roberto Car and Michele Parrinello in 1985 while working at SISSA, [1] who were subsequently awarded the Dirac Medal by ICTP in 2009.
Engineering is the discipline and profession that applies scientific theories, mathematical methods, and empirical evidence to design, create, and analyze technological solutions, balancing technical requirements with concerns or constraints on safety, human factors, physical laws, regulations, practicality, and cost.