Search results
Results from the WOW.Com Content Network
Maxwell's equations, or Maxwell–Heaviside equations, ... where ε 0 is the permittivity of free space and μ 0 the permeability of free space. Since there is no ...
μ 0 ≈ 12.566 × 10 −7 H/m is the magnetic constant, also known as the permeability of free space, ε 0 ≈ 8.854 × 10 −12 F/m is the electric constant, also known as the permittivity of free space, c is the speed of light in free space, [9] [10] The reciprocal of Z 0 is sometimes referred to as the admittance of free space and ...
In free space, where ε = ε 0 and μ = μ 0 are constant everywhere, Maxwell's equations simplify considerably once the language of differential geometry and differential forms is used. The electric and magnetic fields are now jointly described by a 2-form F in a 4-dimensional spacetime manifold.
Its presence in the equations now used to define electromagnetic quantities is the result of the so-called "rationalization" process described below. But the method of allocating a value to it is a consequence of the result that Maxwell's equations predict that, in free space, electromagnetic waves move with the speed of light.
Because of the linearity of Maxwell's equations in a vacuum, solutions can be decomposed into a superposition of sinusoids. This is the basis for the Fourier transform method for the solution of differential equations. The sinusoidal solution to the electromagnetic wave equation takes the form
Eighteen of Maxwell's twenty original equations can be vectorized into six equations, labeled to below, each of which represents a group of three original equations in component form. The 19th and 20th of Maxwell's component equations appear as and below, making a total of eight vector equations. These are listed below in Maxwell's original ...
Maxwell's equations can be applied relative to an observer in free fall, because free-fall is an inertial frame. So the starting point of considerations is to work in the free-fall frame in a gravitational field—a "falling" observer. In the free-fall frame, Maxwell's equations have their usual, flat-spacetime form for the falling observer.
The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally written as μ 0 (pronounced "mu nought" or "mu zero").