enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laminar–turbulent transition - Wikipedia

    en.wikipedia.org/wiki/Laminarturbulent_transition

    Reynolds’ 1883 experiment on fluid dynamics in pipes Reynolds’ 1883 observations of the nature of the flow in his experiments. In 1883 Osborne Reynolds demonstrated the transition to turbulent flow in a classic experiment in which he examined the behaviour of water flow under different flow rates using a small jet of dyed water introduced into the centre of flow in a larger pipe.

  3. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    The Moody chart can be divided into two regimes of flow: laminar and turbulent. For the laminar flow regime ( R e {\displaystyle Re} < ~3000), roughness has no discernible effect, and the Darcy–Weisbach friction factor f D {\displaystyle f_{D}} was determined analytically by Poiseuille :

  4. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    a) stable, b) turbulent. In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. [1]

  5. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    The dimensionless Reynolds number is an important parameter in the equations that describe whether fully developed flow conditions lead to laminar or turbulent flow. The Reynolds number is the ratio of the inertial force to the shearing force of the fluid: how fast the fluid is moving relative to how viscous it is, irrespective of the scale of ...

  6. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the Reynolds number of the local flow conditions. Separation occurs in flow that is slowing down, with pressure increasing, after passing the thickest part of a streamline body or passing through a widening passage, for example.

  7. Turbulence - Wikipedia

    en.wikipedia.org/wiki/Turbulence

    With respect to laminar and turbulent flow regimes: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, vortices and other flow instabilities.

  8. Transition point - Wikipedia

    en.wikipedia.org/wiki/Transition_point

    In the field of fluid dynamics the point at which the boundary layer changes from laminar to turbulent is called the transition point.Where and how this transition occurs depends on the Reynolds number, the pressure gradient, pressure fluctuations due to sound, surface vibration, the initial turbulence level of the flow, boundary layer suction, surface heat flows, and surface roughness.

  9. Biofluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Biofluid_dynamics

    This is known as turbulent flow. Laminar flow occurs in flow environments where Re < 2000. Turbulent flow is present in circumstances under which Re > 4000. The range of 2000 < Re < 4000 is known as the transition range. Most blood flow in humans is laminar, having a Re of 300 or less, it is possible for turbulence to occur at very high flow ...