Search results
Results from the WOW.Com Content Network
C 4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack. [1] C 4 fixation is an addition to the ancestral and more common C 3 carbon fixation.
Heck-type cross coupling of phenylboronic acid and alkenes and alkynes has been demonstrated. [9] Aryl azides and nitroaromatics can also be generated from phenylboronic acid. [4] Phenylboronic acid can also be regioselectively halodeboronated using aqueous bromine, chlorine, or iodine: [10] PhB(OH) 2 + Br 2 + H 2 O → PhBr + B(OH) 3 + HBr
The general structure of a boronic acid, where R is a substituent.. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]
[citation needed] [26] In C 4 photosynthesis, carbon is fixed by an enzyme called PEP carboxylase, which, like all enzymes involved in C 4 photosynthesis, originated from non-photosynthetic ancestral enzymes. [27] [28] A second mechanism, CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid ...
Life functions through the specialized chemistry of carbon and water, and builds largely upon four key families of chemicals: lipids for cell membranes, carbohydrates such as sugars, amino acids for protein metabolism, and nucleic acid DNA and RNA for the mechanisms of heredity. Any successful theory of abiogenesis must explain the origins and ...
The citric acid cycle is an example of a metabolon that facilitates substrate channeling. [ 1 ] [ 2 ] Another example is the dhurrin synthesis pathway in sorghum, in which the enzymes assemble as a metabolon in lipid membranes. [ 3 ]
Proteins catabolize into amino acids, and amino acids are precursors for purines, nucleotides and nucleosides which are used in the purine nucleotide cycle. [7] The amino acid glutamate is used to neutralize the ammonia produced when AMP is converted into IMP. Another amino acid, aspartate, is used along with IMP to produce S-AMP in the cycle ...