Search results
Results from the WOW.Com Content Network
Both force and displacement are vectors. The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: =
According to this formula, the graph of the applied force F s as a function of the displacement x will be a straight line passing through the origin, whose slope is k. Hooke's law for a spring is also stated under the convention that F s is the restoring force exerted by the spring on whatever is pulling its free end.
Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.
[18]: 14–15 The torque can vanish even when the force is non-zero, if the body is located at the reference point (=) or if the force and the displacement vector are directed along the same line. The angular momentum of a collection of point masses, and thus of an extended body, is found by adding the contributions from each of the points.
For linear elastic springs, the displacement x is proportional to the force applied =, where K is the spring constant and has the unit of N/m. The displacement x is measured from the undisturbed position of the spring (that is, X = 0 when F = 0). Substituting the two equations
The formula above for the principle of virtual work with applied torques yields the generalized force = = / = The mechanical advantage of the gear train is the ratio of the output torque T B to the input torque T A , and the above equation yields M A = T B T A = R . {\displaystyle MA={\frac {T_{B}}{T_{A}}}=R.}
The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration, the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest. [2]
In the application of the principle of virtual work it is often convenient to obtain virtual displacements from the velocities of the system. For the n particle system, let the velocity of each particle P i be V i, then the virtual displacement δr i can also be written in the form [2] = = ˙, =, …,.