Search results
Results from the WOW.Com Content Network
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.
Young's modulus Density (g/cm 3) Young's modulus per density; specific stiffness (10 6 m 2 s −2) Young's modulus per density squared (10 3 m 5 kg −1 s −2) Young's modulus per density cubed (m 8 kg −2 s −2) Reference Latex foam, low density, 10% compression [4] 5.9 × 10 ^ −7: 0.06: 9.83 × 10 ^ −6: 0.000164: 0.00273: Reversible ...
Isotropic elastic properties can be found by IET using the above described empirical formulas for the Young's modulus E, the shear modulus G and Poisson's ratio v. For isotropic materials the relation between strains and stresses in any point of flat sheets is given by the flexibility matrix [S] in the following expression:
The stress-displacement, or vs x, relationship during fracture can be approximated by a sine curve, = (/), up to /4. The initial slope of the vs x curve can be related to Young's modulus through the following relationship:
The actual elastic modulus lies between the curves. In materials science , a general rule of mixtures is a weighted mean used to predict various properties of a composite material . [ 1 ] [ 2 ] [ 3 ] It provides a theoretical upper- and lower-bound on properties such as the elastic modulus , ultimate tensile strength , thermal conductivity ...
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]