Ad
related to: co2 fractional laser pictures
Search results
Results from the WOW.Com Content Network
The active laser medium (laser gain/amplification medium) is a gas discharge which is air- or water-cooled, depending on the power being applied. The filling gas within a sealed discharge tube consists of around 10–20% carbon dioxide (CO
Fraxel Restore Dual incorporates a combination of a 1,550nm erbium glass laser and an ablative 1,927nm thulium fiber laser. It is commonly used to treat wrinkles, photoaging, surgical scars, and acne scars. [3] Fraxel Repair uses an ablative 10,600nm-wavelength carbon-dioxide (CO 2) laser. This laser is the most aggressive among Fraxel lasers ...
Fractional laser photothermolysis (FP) is a form of laser-based skin resurfacing, with several devices on the market, such as Fraxel. A fractional laser delivers laser light to the skin. Hundreds or thousands of laser pinpoints may be used per square inch, leaving healthy skin between the ablated areas.
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
A TEA laser is a gas laser energized by a high-voltage electrical discharge in a gas mixture generally at or above atmospheric pressure. The most common types are carbon dioxide lasers and excimer lasers, both used extensively in industry and research; less common are nitrogen lasers. The acronym "TEA" stands for "transversely excited atmospheric".
The gas laser was the first continuous-light laser and the first laser to operate on the principle of converting electrical energy to a laser light output. The first gas laser, the Helium–neon laser (HeNe), was co-invented by Iranian engineer and scientist Ali Javan and American physicist William R. Bennett, Jr., in 1960. It produced a ...
The active laser medium (also called a gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously populated by a pump source .
Concentration of CO 2 can be measured by subjecting a sample to pulses of electromagnetic energy (such as from a distributed feedback laser [4]) that is tuned specifically to the absorption wavelength of CO 2. With each pulse of energy, the CO 2 molecules within the sample will absorb and generate pressure waves via the photoacoustic effect.
Ad
related to: co2 fractional laser pictures