Search results
Results from the WOW.Com Content Network
Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...
A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry ; [ 3 ] it is also possible for a figure/object to have more than one line of symmetry.
In geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself.. Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the special orthogonal group SO(2), and unitary group U(1).
There is no geometric figure that has as full symmetry group the circle group, but for a vector field it may apply (see the three-dimensional case below). the orthogonal group O(2) consisting of all rotations about a fixed point and reflections in any axis through that fixed point. This is the symmetry group of a circle.
The infinite series of axial or prismatic groups have an index n, which can be any integer; in each series, the nth symmetry group contains n-fold rotational symmetry about an axis, i.e. symmetry with respect to a rotation by an angle 360°/n. n=1 covers the cases of no rotational symmetry at all.
The symmetry group of a square belongs to the family of dihedral groups, D n (abstract group type Dih n), including as many reflections as rotations. The infinite rotational symmetry of the circle implies reflection symmetry as well, but formally the circle group S 1 is distinct from Dih(S 1) because the latter explicitly includes the reflections.
The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2,R). The group of rotations alone is the circle group T. All circles are similar. [12] A circle circumference and radius are ...
Symmetry (left) and asymmetry (right) A spherical symmetry group with octahedral symmetry. The yellow region shows the fundamental domain. A fractal-like shape that has reflectional symmetry, rotational symmetry and self-similarity, three forms of symmetry. This shape is obtained by a finite subdivision rule.