Search results
Results from the WOW.Com Content Network
To see this, note that the two constraints x 1 (x 1 − 1) ≤ 0 and x 1 (x 1 − 1) ≥ 0 are equivalent to the constraint x 1 (x 1 − 1) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}. Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained ...
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.
Convex quadratically constrained quadratic programs can also be formulated as SOCPs by reformulating the objective function as a constraint. [4] Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program. [4]
An example of the constrained task type is the scheduling of multiple workflows. Workflows involve sequence constraints on some of the individual work steps. For example, a thread cannot be cut until the corresponding hole has been drilled in a workpiece. Such problems are also called order-based permutations.
Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quadratically_constrained_quadratic_programming&oldid=108303839"
It was the woman's mission to find the Dachshund a home before the holidays. And what better way to do so than by sharing a video of the dog in his kennel and giving him an introduction to the ...
The IBM ILOG CPLEX Optimizer solves integer programming problems, very large [3] linear programming problems using either primal or dual variants of the simplex method or the barrier interior point method, convex and non-convex quadratic programming problems, and convex quadratically constrained problems (solved via second-order cone programming, or SOCP).