Search results
Results from the WOW.Com Content Network
The binary tensor product is associative: (M 1 ⊗ M 2) ⊗ M 3 is naturally isomorphic to M 1 ⊗ (M 2 ⊗ M 3). The tensor product of three modules defined by the universal property of trilinear maps is isomorphic to both of these iterated tensor products.
[4] Tor R 0 (A, B) ≅ A ⊗ R B for any right R-module A and left R-module B. Tor R i (A, B) = 0 for all i > 0 if either A or B is flat (for example, free) as an R-module. In fact, one can compute Tor using a flat resolution of either A or B; this is more general than a projective (or free) resolution. [5] There are converses to the previous ...
For some purposes, this definition can be made using the tensor product of modules over (or equivalently of abelian groups), while other aspects of this topic make use of a vector space structure on the invariants, obtained by considering the two factors and / to be vector spaces over and taking the tensor product of vector spaces over . This ...
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
In particular, () is the usual tensor product of modules M and N over R. Geometrically, the derived tensor product corresponds to the intersection product (of derived schemes ). Example : Let R be a simplicial commutative ring , Q ( R ) → R be a cofibrant replacement, and Ω Q ( R ) 1 {\displaystyle \Omega _{Q(R)}^{1}} be the module of ...
In this interpretation, the category End(R) = Bimod(R, R) is exactly the monoidal category of R-R-bimodules with the usual tensor product over R the tensor product of the category. In particular, if R is a commutative ring, every left or right R-module is canonically an R-R-bimodule, which gives a monoidal embedding of the category R-Mod into ...
Then the von Neumann tensor product of the von Neumann algebras is the strong completion of the set of all finite linear combinations of simple tensor products where for =, This is exactly equal to the von Neumann algebra of bounded operators of H 1 ⊗ H 2 . {\displaystyle H_{1}\otimes H_{2}.}
The tensor product is the direct product of objects, and any terminal object (empty product) is the unit object. The category of bimodules over a ring R is monoidal (using the ordinary tensor product of modules), but not necessarily symmetric. If R is commutative, the category of left R-modules is symmetric monoidal. The latter example class ...