enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phosphorescence - Wikipedia

    en.wikipedia.org/wiki/Phosphorescence

    Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluorescence, a phosphorescent material does not immediately reemit the radiation it absorbs.

  3. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    Jablonski diagram including vibrational levels for absorbance, non-radiative decay, and fluorescence. When a molecule absorbs a photon, the photon energy is converted and increases the molecule's internal energy level. Likewise, when an excited molecule releases energy, it can do so in the form of a photon.

  4. Phosphor - Wikipedia

    en.wikipedia.org/wiki/Phosphor

    Jablonski diagram shows the energy levels in a fluorescing atom in a phosphor. An electron in the phosphor absorbs a high-energy photon from the applied radiation, exciting it to a higher energy level. After losing some energy in non-radiative transitions, it eventually transitions back to its ground state energy level by fluorescence, emitting ...

  5. Fluorescence - Wikipedia

    en.wikipedia.org/wiki/Fluorescence

    Phosphorescence is similar to fluorescence in its requirement of light wavelengths as a provider of excitation energy. The difference here lies in the relative stability of the energized electron. The difference here lies in the relative stability of the energized electron.

  6. Photoluminescence - Wikipedia

    en.wikipedia.org/wiki/Photoluminescence

    Electrons change energy states by either resonantly gaining energy from absorption of a photon or losing energy by emitting photons. In chemistry-related disciplines, one often distinguishes between fluorescence and phosphorescence. The former is typically a fast process, yet some amount of the original energy is dissipated so that re-emitted ...

  7. Fluorescence in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_the_life...

    Phosphorescence is a property of materials to absorb light and emit the energy several milliseconds or more later (due to forbidden transitions to the ground state of a triplet state, while fluorescence occurs in excited singlet states). Until recently, this was not applicable to life science research due to the size of the inorganic particles.

  8. Kasha's rule - Wikipedia

    en.wikipedia.org/wiki/Kasha's_rule

    A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.

  9. Intersystem crossing - Wikipedia

    en.wikipedia.org/wiki/Intersystem_crossing

    Fluorescence microscopy relies upon fluorescent compounds, or fluorophores, in order to image biological systems.Since fluorescence and phosphorescence are competitive methods of relaxation, a fluorophore that undergoes intersystem crossing to the triplet excited state no longer fluoresces and instead remains in the triplet excited state, which has a relatively long lifetime, before ...