Ads
related to: spectral layout example in geometry practicekutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Spectral layout is a class of algorithm for drawing graphs. The layout uses the eigenvectors of a matrix, such as the Laplace matrix of the graph, as Cartesian coordinates of the graph's vertices. The idea of the layout is to compute the two largest (or smallest) eigenvalues and corresponding eigenvectors of the Laplacian matrix of the graph ...
Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.
Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...
The famous Cheeger's inequality from Riemannian geometry has a discrete analogue involving the Laplacian matrix; this is perhaps the most important theorem in spectral graph theory and one of the most useful facts in algorithmic applications. It approximates the sparsest cut of a graph through the second eigenvalue of its Laplacian.
Ramanujan graphs are in some sense the best expanders, and so they are especially useful in applications where expanders are needed. Importantly, the Lubotzky, Phillips, and Sarnak graphs can be traversed extremely quickly in practice, so they are practical for applications. Some example applications include
If X is a Hilbert space and T is a self-adjoint operator (or, more generally, a normal operator), then a remarkable result known as the spectral theorem gives an analogue of the diagonalisation theorem for normal finite-dimensional operators (Hermitian matrices, for example).
Ads
related to: spectral layout example in geometry practicekutasoftware.com has been visited by 10K+ users in the past month