Search results
Results from the WOW.Com Content Network
Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces , antigen processing must occur before the antigen fragment can be recognized by a T-cell receptor .
The latter case induces recognition by antigen-specific Th2 cells or Tfh cells, leading to activation of the B cell through binding of TCR to the MHC-antigen complex. It is followed by synthesis and presentation of CD40L (CD154) on the Th2 cell, which binds to CD40 on the B cell, thus the Th2 cell can co-stimulate the B cell. [11]
Antigen presentation stimulates immature T cells to become either mature "cytotoxic" CD8+ cells or mature "helper" CD4+ cells. An antigen-presenting cell (APC) or accessory cell is a cell that displays an antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation.
The adaptive immune response is antigen-specific and requires the recognition of specific "non-self" antigens during a process called antigen presentation. Antigen specificity allows for the generation of responses that are tailored to specific pathogens or pathogen-infected cells.
Once the exogenous antigen peptide is loaded onto the MHC class I molecule, the complex is exported to the cell surface for antigen cross presentation. There is also evidence that suggest that cross-presentation requires a separate pathway in a proportion of CD8(+) dendritic cells that are able to cross-present.
It is in this way, the MHC class I-dependent pathway of antigen presentation, that the virus infected cells signal T-cells that abnormal proteins are being produced as a result of infection. The fate of the virus-infected cell is almost always induction of apoptosis through cell-mediated immunity, reducing the risk of infecting neighboring ...
HLA-A projected away from the cell surface and presenting a peptide sequence. The peptide-MHC complex presents a surface that looks like an altered self to the TCR. [11] The surface consisting of two α helices from the MHC and a bound peptide sequence is projected away from the host cell to the T cells, whose TCRs are projected away from the T cells towards the host cells.
The process ultimately results in novel amino acid sequences in the antigen-binding regions of immunoglobulins and TCRs that allow for the recognition of antigens from nearly all pathogens including bacteria, viruses, parasites, and worms as well as "altered self cells" as seen in cancer.